Current Status and Future Prospects of Application Specific Engineered Nanocurcumin Compounds

DOI:

https://doi.org/10.37285/ijpsn.2016.9.5.1

Authors

  • Shamim Ahmad

Abstract

Establishing chemical conjugations among complex macromolecules and nanostructured material species with the help of activity-specific chemical moieties either acquired during chemical synthesis of the backbone structures or attaching them later along with the targeting ligands on to the nanoparticulate surfaces by surface functionalization are currently being used in preparing functional compounds appropriate for targeted drug/gene delivery applications. Current drug discoveries involving phytochemicals in place of purely synthetic molecules are getting translated faster into relatively cost-effective formulations that are free from meeting most of the requirements of the stringent test-conditions set by the regulatory authorities as they use the constituents with known toxicity profiles already established through traditional experience of using them as medicine over a long period of time in the past. Moreover, the knowledge of their physico-chemical attributes like hydrophilicity, hydro-phobicity, and amphiphilicity of these constituents is easy to put to use in controlling the shape and size of the nanoparticulate formulations through self-organized nano/microstructures like micelles and other hierarchical supramolecular assemblies in different solvent media as discussed in this review. The structure activity relationships (SARs) of curcumins have shown enough indications that they are going to emerge as an intelligent drug design platforms where the synergistic combinations with natural and benign phytochemicals with numerous biomedical activities would certainly produce smarter but affordable treatments of human ailments in near future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Nanoparticulate Preparations of Curcumin, Smart and Intelligent Drug Design Platform, Pharmaceutical Efficacy of Curcumin against Human Diseases.

Downloads

Published

2016-07-31

How to Cite

1.
Ahmad S. Current Status and Future Prospects of Application Specific Engineered Nanocurcumin Compounds. Scopus Indexed [Internet]. 2016 Jul. 31 [cited 2024 May 2];9(5):3391-45. Available from: https://www.ijpsnonline.com/index.php/ijpsn/article/view/878

Issue

Section

Review Articles

References

Mulik, R., Mahadik, K., and Paradkar, A. 2009. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. European J. Pharmaceutical Sciences 37: 395-404.

Mura, S., and Couvreur, P. 2012. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64(13): 1394-416.

Nakagawa-Goto, K., Yamada, K., Nakamura, S., Chen, T. H., Chiang, P. C., Bastow, K. F., Wang, S. C., Spohn, B., Hung, M. C., Lee, F. Y., Lee, F. C., and Lee, K. H. 2007. Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant-taxoid conjugates as novel cytotoxic agents. Bioorg. Med. Chem Lett. 17: 5204-9.

Narayanan, N. K., Nargi, D., Randolph, C., and Narayanan, B. A. 2009. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer 125: 1-8.

Nawaz, A., Khan, G. M., Akhlaq, M., Zeb, A., Khan, A., Hussain, A., and Dayo, A. 2012. Formulation and In-vitro Evaluation of Topically Applied Curcumin Hydrogel. Lat. Am. J. Pharm. 31(5): 671-7.

Naz, Z., and Ahmad, F. J. 2015. Curcumin-loaded colloidal carrier system: formulation optimization, mechanistic insight, ex vivo and in vivo evaluation. Int. J. Nanomedicine 10: 4293-4307.

Nigam, S., Kumar, A., Thouas, G. A., Bahadur, D., and Chen. Q. 2014. Curcumin deliveryusing magnetic liposomes. J. Nano pharmaceutics and Drug Delivery 1: 1–11.

O’Neill, B. E., and Rapoport, N. 2011. Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther. Deliv. 2(9): 1165-87.

Oguzturk, H., Ciftci, O., Aydin, M., Timurkaan, N., Beytur, A., and Yilmaz, F. 2012. Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia 44: 243-9.

Ohtsu, H., Xiao, Z., Ishida, J., Nagai, M., Wang, H. K., Itokawa, H., Su, C. Y., Shih, c., Chiang, T., Chang, E., Lee, Y., Tsai, M. Y., Chang, C., and Lee, K. H. 2002. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem. 45: 5037-42.

Oliveira, H., Perez-Andres, E., Thevenot, J., Sandre, O., Berra, E., and Lecommandoux, S. 2013. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control Release 169: 165-70.

Onodera, Kuriyama, Andoh, Ichikawa, Sakamoto, Lee-Hiraiwa, and Mizushina. Influence of particle size on the in vitro and in vivo anti-inflammatory and anti-allergic activities of a curcumin lipid nanoemulsion. Int. J. Molecular Medicine 35(6): 1720-8 (2015).

Osorio-Tobón, J. F., and Meireles, M. A. A. 2013.Recent Applications of Pressurized Fluid Extraction: Curcuminoids Extraction with Pressurized Liquids. Food and Public Health 3(6): 289-303.

Osorio-Tobón, J. F., Carvalho, P. I. N., Rostagno, M. A., Petenate, A. J., and Meireles, M. A. A. 2014. Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. J. Supercritical Fluids 95: 167-74.

Padhye, S., Banerjee, S., Chavan, D., Pandye, S., Swamy, K. V., Ali, S., Li, J., Dou, Q. P., and Sarkar, F. H. 2009.Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm. Res. 26(11): 2438-45.

Padhye, S., Chavan, D., Pandey, S., Deshpande, J., Swamy, K. V., and Sarkar, F. H. 2010. Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Med. Chem. 10: 372-87.

Pal, A., Sung, B., Prasad, B. A. B.,Schuber Jr., P. T., Prasad, S., Aggarwal, B. B., and Bornmann, W. G. 2014. Curcumin glucuronides: Assessing the proliferative activity against human cell lines. Bioorganic & Medicinal Chemistry 22(1): 435-9.

Pal, M., Sachdeva, M., Gupta, N., Mishra, P., Yadav, M., and Tiwari, A. 2015. Lead Exposure in Different Organs of Mammals and Prevention by Curcumin–Nanocurcumin: a Review. Biological Trace Element Research168(2): 380-391.

Pan, R., Qiang, S., Liew, K., Zhao, Y., Wang, R., and Zhu, J. 2009. Effect of stabilizer on synthesis of indium tin oxide nanoparticles. Powder Technol 189(1): 126-129.

Pandelidou, M., Dimas, K., Georgopoulos, A., Hatziantoniou, S., and Demetzos, C. 2011. Preparation and characterization of lyophilized EGG PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines. J. Nanosci. Nanotechnol. 11: 1259-66.

Pandey, M. K., Kumar, S., Thimmulappa, R. K., Parmar, V. S., Biswal, S., and Watterson A. C. 2011. Design, synthesis and evaluation of novel PEGylated curcumin analogs as potent Nrf2 activators in human bronchial epithelial cells. Eur. J. Pharm. Sci. 43: 16–24.

Pandit, A. A., and Dash, A. K. 2011. Surface Modified Solid Lipid Nanoparticulate Formulation For Ifosfamide: Development And Characterization. Nanomedicine (Lond). 6(8): 1397-1412.

Pandit, R. S., Gaikwad, S. C., Agarkar, G. A., Gade, A. K., and Rai, M. 2015. Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. Biotech. 5: 991-7.

Pang, S. C., Tay, S. H., and Chin, S. F. 2014. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles. J. Nano-materials Volume 2014; Article ID 824025, 7 pages.

Patel, R., Singh, S. K., Singh, S., Sheth, N. R., and Gendle, R. 2009. Development and Characterization of Curcumin Loaded Transfersome for Transdermal Delivery. J. Pharm. Sci. & Res. 1(4): 71-80.

Pathak, L., Kanwal, A., and Agrawal, Y. 2015. Curcumin loaded self-assembled lipid-biopolymer nanoparticles for functional food applications J. Food Science and Technology 52(10): 6143-56.

Patil, J., Gurav, P., Kulkarni, R., Jadhav, S., Mandave, S., Shete, M., and Chipade, V. 2013. Application of solid lipid nanoparticles in novel drug delivery system. British Biomed. Bulletin 1(2): 103-118.

Payne, A. J., Centola, M., and Chancey, J. 2015. Curcumin-peptide conjugates and formulations thereof, Patent: US 20150320878 A1; 11/12/2015

Petri, B., Bootz, A., Khalansky, A., Hekmatara, T., Muller, R., Uhl, R., Kreuter, J., and Gelperina, S. 2007. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly (butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J. Control Release 117: 51-8.

Phan, Q. T., Le, M. H., Le, T. T. H., Tran, T. H. H., Xuan, P. N., and Ha, P. T. 2016. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA: PEG ratios. Int. J. Pharmaceutics 507(1-2): 32-40.

Pinheiro, A. C., Coimbra, M. A., and Vicente, A. A. 2016. In vitro behavior of curcumin nanoemulsions stabilized by biopolymer emulsifiers - Effect of interfacial composition. Food Hydrocolloids 52: 460-7.

Pinheiro, A. C., Lad, M., Silva, H. D., Coimbra, M. A., Boland, M., and Vicente, A. A. 2013. Unraveling the behavior of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter 9: 3147.

Pinsornsak, P., and Niempoog, S. 2012. The efficacy of Curcuma Longa L. extract as an adjuvant therapy in primary knee osteoarthritis: A randomized control trial. J. Medical Association of Thailand 95(1): 59-64.

Poma, P., Notarbartolo, M., Labbozzetta, M., Maurici, A., Carina, V., Alaimo, A., Rizzi, M., Simoni, D., and D'Alessandro, N. 2007. The antitumor activities of curcumin and of its isoxazole analogue are not affected by multiple gene expression changes in an MDR model of the MCF-7 breast cancer cell line: analysis of the possible molecular basis. Int. J. Mol. Med. 20: 329-35.

Poole, K. M., Nelson, C. E., Joshi, R. V., Martin, J. R., Gupta, M. K., Haws, S. C., Kavanaugh, T. E., Skala, M. C., and Duvall, C. L. 2015. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 41: 166e175.

Prashant, S., Vineet, M., Amit, K., Vikram, K., Venkatesh, T., Dharmendra, C., Priyanka, K., Himangsu, B., Rituraj, K., Ritu, T., and Ranjan, M. 2014. Nanoemulsion Based Concomitant Delivery of Curcumin and Etoposide: Impact on Cross Talk Between Prostate Cancer Cells and Osteoblast During Metastasis. J Biomed Nanotech 10(11): 3381-91.

Pucci, D., Bellini, T., Crispini, A., D’Agnano, I., Liquori, P. F., Garcia-Orduna, P., Pirillo, S., Valentini, A., and Zanchetta, G. 2012. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) Complexes. Med. Chem. Commun. 3: 462-8.

Pyo, D., and Kim, E. 2014. Rapid and efficient extraction of curcumins from curry powder using supercritical CO2. Bull. Korean Chem. Soc. 35(10): 3107.

Qian, C., and McClements, D. J. 2011. Formation of nanoemulsions stabilized by model foodgrade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 25(5): 1000-1008.

Qiu, X., Du, Y., Lou, B., Zuo, Y., Shao, W., Huo, Y., Huang, J., Yu, Y., Zhou, B., Du, J., Fu, H., and Bu, X. 2010. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem. 53(23): 8260-73.

Qiu, X., Liu, Z., Shao, W. Y., Liu, X., Jing, D. P., Yu, Y. J., An, L. K., Huang, S. L., Bu, X. Z., Huang, Z. S., and Gu, L. Q. 2008. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors. Bioorg. Med. Chem. 16: 8035-41.

Rachmawati, H., Al Shaal, L., Muller, R. H., and Keck, C. M. 2013. Development of Curcumin Nanocrystal: Physical Aspects. J. Pharmaceutical Sciences 102(1): 204-14.

Rachmawati, H., Budiputra, D. K., and Mauludin, R. 2015. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev. Ind. Pharm. 41(4): 560-6.

Rachmawati, H., Yee, C. W., and Rahma, A. 2014a. Formulation of tablet containing curcumin nanoemulsion. Int. J. Pharmacy and Pharmaceutical Sciences 6(3): 115-120.

Rachmawati, H., Meylina, L., Rahma, A., and Sumirtapura, Y. C. 2014b. Size-Dependent of Oil Droplet of Curcumin Nanoemulsion on the In vivo Release Kinetic of Curcumin After Oral and Intravenous Administrations in Animal Model. Adv. Science, Engineering and Medicine, 6(9): 959-64.

Rahman, M. H., Ramanathan, M., and Sankar, V. 2014. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line. Pak. J. Pharm. Sci., 27(5): 1281-5.

Rahman, S., Cao, S., Steadman, K. J., Wei, M., and Parekh, H. S. 2012. Native and beta-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv. 19: 346-353.

Ranjan, A. P., Mukerjee, A., Helson, L., and Vishwanatha, J. K. 2013. Mitigating prolonged QT interval in cancer nanodrug development for accelerated clinical translation. J. Nanobiotechnology 11: 40.

Ranjan, A. P., Mukerjee, A., Helson, L., and Vishwanatha, J. K. 2012. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J. Nanobiotechnology 10: 38.

Rawal, N, and Ahmad, S. 2014. Development of Nano curcumin Dye. TR1-COENT-14; Technical Report; March, 2014.

Rejinold, N. S., Muthunarayanan, M., Divyarani, V. V., Sreerekha, P. R., Chennazhi, K. P., Nair, S. V., Tamura, H., and Jayakumar, R. 2011. Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J. Colloid. Interface Sci. 360: 39-51.

Rennolds, J., Malireddy, S., Hassan, F., Tridandapani, S., Parinandi, N., Boyaka, P. N., and Cormet-Boyaka, E. 2012. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem. Biophys. Res. Commun. 417: 256-61.

Rocks, N., Bekaert, S., and Cataldo, D. 2012. Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. British J. Cancer 107: 1083-92.

Rosenblatt, K. M., and Bunjes, H. 2009. Poly (vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the a-modification. Mol. Pharm. 6: 105-120.

Roy, R., Yang, J., and Moses, M. A. 2009. Matrix metallo-proteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27: 5287-97.

Rungphanichkul, N., Nimmannit, U., Muangsiri, W., and Rojsitthisak, P. 2011. Preparation of curcuminoid niosomes for enhancement of skin permeation. Pharmazie 66: 570-5.

Ryu, E. K., Choe, Y. S., Lee, K. H., Choi, Y., and Kim, B. T. 2006. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for -amyloid plaque imaging. J. Med. Chem. 49(20): 6111-9.

Ryu, M. J., Cho, M., Song, J. Y., Yun, Y. S., Choi, I. W., Kim, D. E., Park, B. S., and Oh, S. 2008. Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun. 377: 1304-8.

Saengkrit, N., Saesoo, S., Srinuanchai, W., Phunpee, S., and Ruktanonchai, U. R. 2014. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces.114: 349-56.

Safavy, A., Raisch, K. P., Mantena, S., Sanford, L. L., Sham, S. W., Krishna, N. R., and Bonner, J. A. 2007. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J. Med. Chem. 50: 6284-8.

Sagnou, M., Benaki, D., Triantis, C., Tsotakos, T., Psycharis, V., Raptopoulou, C. P., Pirmettis, I., Papadopoulos, M., and Pelecanou, M. 2011. Curcumin as the OO bidentate ligand in “2+1” complexes with the [M (CO)3]+(M = Re, Tc99m) tricarbonyl core for radiodiagnostic applications. Inorg. Chem. 50: 1295-303.

Saha, K., Agasti, S. S., Kim, C., Li, X., and Rotello, V. M. 2012. Gold nanoparticles in chemical and biological sensing. Chemical Reviews 112(5): 2739-79.

Sahoo, B. K., Ghosh, K. S., and Dasgupta, S. 2009. Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers. 91: 108-19.

Saito, G., Swanson, J. A., and Lee, K. D. 2003. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55: 199-215.

Salmaso, S., Bersani, S., Semenzato, A., and Caliceti, P. 2007. New cyclodextrin bioconjugates for active tumour targeting. J. Drug Target 15: 379-90.

Sankar, P., Telang, A. G., Suresh, S., Kesavan, M., Kannan, K., Kalaivanan, R., and Sarkar, S. N. 2013. Immunomodulatory effects of nanocurcumin in arsenic-exposed rats Int. Immunopharmacology 17(1): 65-70.

Santos, P., Watkinson, A. C., Hadgraft, J., and Lane, M. E. 2008. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol Physiol. 21(5): 246-59.

Sari, T. P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M., and Athira, S. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43: 540-6.

Scarano, W., Souza, P. de, and Stenzel, M. H. 2015. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater. Sci. 3: 163-174.

Schaffazick, S. R., Pohlmann, A. R., de Cordova, C. A. S., Creczynski-Pasa, T. B., and Guterres, S. S. 2005. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int. J. Pharmaceutics 289(1-2): 209-13.

Scher, E. C., Manna, L., and Alivisatos, A. P. 2003. Shape control and applications of nanocrystals. Phil. Trans. R. Soc. Lond. A (2003) 361: 241-257.

Schmaljohann, D. 2006. Thermo and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58: 1655–70.

Selvi, N. M. K., Sridhar, M. G., Swaminathan, R. P., and Sripradha, R. 2015. Efficacy of Turmeric as Adjuvant Therapy in Type 2 Diabetic Patients. Indian Journal of Clinical Biochemistry 30(2): 180-6.

Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Nicki Watson, N., Kiziltepe, T., and Sasisekharan, R. 2005. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436: 568-72.

Sertel, S., Eichhorn, T., Bauer, J., Hock, K., Plinkert, P. K., and Efferth, T. 2012. Pharmacogenomic determination of genes associated with sensitivity or resistance of tumor cells to curcumin and curcumin derivatives. J. Nutr. Biochem. 23(8): 875-84.

Setthacheewakul, S., Mahattanadul, S., Phadoongsombut, N., Pichayakorn, W., and Wiwattanapatapee, R. 2010. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur. J. Pharm. Biopharm. 76(3): 475-85.

Shah, P., Bhalodia, D., and Shelat, P. 2010. Nanoemulsion: A Pharmaceutical Review. Systematic Rev. Pharmacy 1(1): 24-32.

Shahani, K., Swaminathan, S. K., Freeman, D., Blum, A., Mad, L., and Panyam, J. 2010. Injectable Sustained Release Microparticles of Curcumin: A New Concept for Cancer Chemoprevention. Cancer Res. 70(11): 4443-52.

Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., and Ravi Kumar, M. N. V. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 37: 223-30.

Shanmugam, M. K., Rane, G., Kanchi, M. M., Arfuso, F., Chinnathambi, A., Zayed, M. E., Alharbi, S. A., Tan, B. K. H., Kumar, A. P., and Sethi, G. 2015. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Molecules 20(2): 2728-69.

Sharma, S., Tanwar, A., and Gupta, D. K. 2016. Curcumin: an adjuvant therapeutic remedy for liver cancer. Hepatoma Research 2: 62-70.

Shelat, P., Mandowara, V. K., Gupta, D. G., and Pate, S. V. 2015. Formulation of curcuminoid loaded solid lipid nanoparticles in order to improve oral bioavailability. Int. J. Pharm. Pharm. Sci. 7(6): 278-82

Shen, Y., Zhou, Z., Sui, M., Tang, J., Xu, P., Van Kirk, E. A., Murdoch, W. J., Fan, M., and Radosz, M. 2010. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine (Lond) 5: 1205-17.

Shi, H., Xao, X., Li, D., Zhang, Q., Wang, Y., Zheng, Y., Cai, L., Zhong, R., Rui, A., Li, Z., Zheng, H., Chen, X., and Chen, L. 2012. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int. J. Nanomed. 7: 2601-11.

Shim, J. S., Lee, J., Park, H. J., Park, S. J., and Kwon, H. J. 2004. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem. Biol. 11: 1455-63.

Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., and Srinivas, P. S. 1998. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4): 353-6.