Recent Advances in Nanotechnology based Tubercular Chemotherapy

DOI:

https://doi.org/10.37285/ijpsn.2015.8.3.4

Authors

  • Harish Dureja
  • Sunil Khatak

Abstract

Tuberculosis (TB) is a more prevalent granulomatos bacterial infection, which remains the world’s second most common cause of death due to infections of Mycobacterium tuberculosis (M.Tuberculosis). A number of characteristics of mycobacterium makes there disease chronic and necessitate prolonged treatment. The emergence of multi-drug-resistance (MDR) stains of M.Tuberculosis makes its necessary for the development of effective combinations of either first-line or second-line drugs or discovery of new safe and effective drug molecules and also implements other modalities of treatment. A number of novel carrier-based drug delivery systems incorporating the traditional and newer anti-tubercular agents have been shown incredible promise to target the site of action, reduce dosing frequency and enhance drug bioavailability with the objective of improving patient compliance. Nanoparticulate system have unique and comparatively more effective drug delivery carriers, including liposomal-mediated drug delivery, polymeric nanoparticles/microparticles, solid lipid nanoparticles, nanosuspensions, nanoemulsions, niosomes, dendrimers, Metal/cyclodextrin inclusion complexes and other nanosystems exploiting the extraordinary properties of matter at the nanoscale. Nanoparticles shown significant improvements in diagnosis, treatment and prevention and provide the flexibility of selecting the invasive and non-invasive route of delivery for chemotherapy of tuberculosis. This manuscript have been made to highlight and overviews the present WHO estimated burden of tuberculosis globally, recent discovery of safe and effective newer anti-tubercular drug moleculesfor MDR and XDR tuberculosis, first and second line anti-tubercular drugs loaded novel nanoparticle carriers for chemotherapy and development of solid lipid nanoparticles as an alternative drug carriers for tubercular chemotherapy.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Tuberculosis,, multi-drug-resistance, SLNs, liposomes, polymeric nanoparticles, nanosuspensions, nanoemulsions, niosomes, dendrimers, Metal/cyclodextrin inclusion complexes

Downloads

Published

2015-11-30

How to Cite

1.
Dureja H, Khatak S. Recent Advances in Nanotechnology based Tubercular Chemotherapy. Scopus Indexed [Internet]. 2015 Nov. 30 [cited 2024 Dec. 11];8(3):2979-94. Available from: https://www.ijpsnonline.com/index.php/ijpsn/article/view/802

Issue

Section

Review Articles

References

Aboutale E, Noori M, Gandomi N, Atyabi F, Fazeli MR, Jamalifar H and Dinarvand R (2012). Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett, 2: 33-40.

Adams LB, Sinha I, Franzblau SG, Krahenbuhl JL and Mehta RT (1999). Effective treatment of acute and chronic murine tuberculosis with liposome encapsulated clofazimine. Antimicrob Agents Chemother, 43(7): 1638-43.

Ahmad M, Ramadan W, Rambhu D and Shakeel F (2008). Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 63(11): 806-11.

Ahmad Z, Pandey R, Sharma S and Khuller GK (2006). Pharmacokinetic and pharmacodynamic behavior of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents, 27(5): 409-16.

Ain Q, Sharma S, Garg SK and Khuller GK (2002). Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). Int J Pharm, 239(1-2): 37-46.

Alladi S, Rambhau D, Srinivasan S and Mahalingan K (2010). Preparation and evaluation of cationic niosomes encapsulated with micellar solubilized rifampicin. J Global Trends Pharm Sci, 1(1): 7-14.

Alqahtani JM and Asaad AM (2014). Anti-Tuberculous Drugs and Susceptibility Testing Methods: Current Knowledge and Future Challenges. J Mycobac Dis, 4(1): 1-6.

Anisimova YV, Gelperina SE, Peloquin CA and Heifets IB (2000). Nanoparticles as antituberculosis drugs carriers: effect on activity against M. Tuberculosis in human monocyte-derived macrophages. J Nanoparticle Res, 2(2): 165-71.

Arora SK, Sinha N, Jain S, Upadhayaya RS, Jana G, Shanker A and Sinha RK (2004). Pyrrole Derivative as antimycobacterial compounds. Lupin Limited, International Patent WO/2004/026828.

AstraZeneca, (2010). A study in healthy volunteers to assess safety and blood levels of AZD5847 after multiple doses over 14 days. ClinicalTrials.gov, US National Institutes of Health, NCT01116258. (http://www.clinicaltrials.gov)

Bhandari R and Kaur IP (2013). A Method to Prepare Solid Lipid Nanoparticles with Improved Entrapment Efficiency of Hydrophilic Drugs. Current Nanoscience, 9(2): 211-20.

Bogatcheva ME, Nikonenko B, Hundert S, Einck L and Nacy CA (2007). In search of new cures for tuberculosis. Med Chem, 3(3): 301-16.

Bottari B, Maccari R, Monforte F, Ottanà R, Rotondo E and Vigorita MG (2001a). Antimycobacterial in vitro activity of cobalt(II) isonicotinoylhydrazone complexes. Bioorg Med Chem Lett, 11(3): 301-03.

Bottari B, Maccari R, Monforte F, Ottanà R, Vigorita MG, Bruno G, Nicolò F, Rotondo A and Rotondo E (2001). Nickel (II) 2,6-diacetylpyridine bis (isonicotinoylhydrazonate) and bis (benzoyl-hydrazonate) complexes: structure and antimycobacterial evaluation. Bioorg Med Chem, 9(8): 2203-11.

Brahmankar DM and Jaiswal SB (2004). Biopharmaceutics and pharmacokinetics a Treatise. In: Controlled release medication. Vallabhparkashan, pp 335-75.

Buhleier E, Wehner W and Vögtle F (1978). Cascade and Nonskid-Chain-like syntheses of molecular cavity topologies. Synthesis, 2: 155-58.

Cavalli R, Caputo O, Trotta M, Scarnecchia C and Gasco MR (1997). Sterilization and freeze‐drying of drug‐free and drug‐loaded solid lipid nanoparticles. Int J Pharm, 148(1): 47-54.

Centers for Disease Control and Prevention (CDCP) (2006). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs—worldwide, 2000–2004. MMWR Morb Mortal Wkly Re, 55(11): 301-05.

Constantinides PP, Chaubal MV and Shorr R (2008). Advances in lipid-nanodispersions for parenteral drug delivery and targeting. Adv Drug Del Rev, 60(6): 757-67.

David S, Barros V, Cruz C and Delgado R (2005). In vitro effect of free and complexed indium(III) against Mycobacterium tuberculosis. FEMS Microbiollett, 251(1): 119-24.

Deidda D, Lampis G, Fioravanti R, Biava M, Porretta GC, Zanetti S and Pompei R (1998). Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob Agents Chemother, 42(11): 3035-37.

De-Jonge MR, Koymans LH, Guillemont JE, Koul A and Andries K (2007). A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins, 67(4): 971-80.

Deol P and Khuller GK (1997). Lung specific stealth liposomes: Stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim Biophys Acta, 1334(2-3): 161-72.

Deol P, Khuller GK and Joshi K (1997). Therapeutic efficacies of isoniazid and rifampin encapsulated in lung specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob Agents Chemother, 41(6): 1211-14.

Drlica K and Zhao X (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev, 61(3): 377-92.

Dutt M and Khuller GK (2001). Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J Antimicrob Chemother, 47(6): 829-35.

Düzgüneş N, Flasher D, Reddy VM, Luna-Herrera J and Gangadharam PR (1996). Treatment of intracellular Mycobacterium avium complex by free and liposome-encapsulated sparfloxacin. Antimicrob Agents Chemother, 40(11): 2618-21.

El-Ridy MS, Abdelbary A, Nasr EA, Khalil RM, Mostafa DM, El-Batal AI and Abd El-Alim SH (2011). Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev Ind Pharm, 37(9): 1110-18.

El-Ridy MS, Mostafa DM, Shehab A, Nasr EA and Abd El-Alim S (2007). Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int J Pharm, 330(1): 82-88.

El-Ridy MS, Yehia SA, Kassem MA, Mostafa DM, Nasr E and Asfour MH (2015). Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv, 22(1): 21-36.

Ferreira DA, Ferreira AG, Vizzotto L, Neto AF and Oliveira AG (2004). Analysis of the molecular association of rifampicin with hydroxypropyl-β- cyclodextrin. Brazilian J Pharm Sci, 40(1): 43-51.

Fréchet JMJ and Hawker CJ (1990). Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc, 112(21): 7638-47.

Gangadharam PR, Ashtekar DA, Ghori N, Goldstein JA, Debs RJ and Duzgunes N (1991). Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother, 28(3): 425-35.

Gangadharam PR, Geeta N, Hsu YY and Wise DL (1999). Chemotherapy of tuberculosis in mice using single implants of Isoniazid and pyrazinamide. Int J Tuberc Lung Dis, 3(6): 515-20.

Gao Q and Li X (2010). Transmission of MDR tuberculosis. Drug Discovery Today:Disease Mechanism, 7: e61-e65.

Gaspar MM, Cruz A, Penha AF, Reymao J, Sousa AC, Eleuterio CV, Domingues SA, Fraga AG, Filho AL, Cruz ME and Pedrosa J (2008). Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents, 31(1): 37-45.

Ghiani S, Maiocchi A, Brioschi C, Visigalli M, Cabella C and Miragoli L (2014). Paramagnetic solid lipid nanoparticles (pslns) containing metal amphiphilic complexes for mri. WO2014037498 A2.

Gillespie SH and Kennedy N (1998). Fluoroquinolones: A new treatment for tuberculosis? Int J Tuberc Lung Dis, 2: 265-271.

Global tuberculosis report (2013). WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland, pp 1-289.

Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V and Langer R (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153): 1600-03.

Griffiths G, Nyström B, Sable SB & Khuller GK (2010). Alternative delivery systems for the treatment of tuberculosis. Nat Rev Microbiol, 8(11): 827-34.

Guerrero DQ, Zaragoza MDLLZ, Cardenas AA and Silva EM (2014). Composition of solid lipid nanoparticles for the long-term conservation of fruits, vegetables, seeds, cereals and/or fresh foodstuffs using a coating. US20140205722 A1.

Gutierrez-Lugo MT and Bewley CA (2008). Natural products, small molecules and genetics in tuberculosis drug development. J Med Chem, 51(9): 2606-12.

Ibrahim M, Andries K, Lounis N, Chauffour A, Pemot CT, Jarlier V and Veziris N (2007). Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Chemother, 51(3): 1011-15.

Jain CP and Vyas SP (1995). Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul, 12(4): 401-07.

Jain CP, Vyas SP and Dixit VK (2006). Niosomal system for delivery of rifampicin to lymphatics. Indian J Pharm Sci, 68(5): 575-78.

Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharat S, Shandil RK, Kantharaj E and Balasubramanian V (2003). Pharmacokinetics-pharmaco-dynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother, 47(7): 2118-24.

Jenning V, Gysler A, Schafer-Korting M and Gohla S (2000). Vitamin-A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm, 49(3): 211-18.

Jia L, Tomaszewski JE, Noker PE, Gorman GS, Glaze E and Protopopova M (2005). Simultaneous estimation of pharmacokinetic properties in mice of three anti-tubercular Ethambutol analogs obtained from combinatorial lead optimization. J Pharm Biomed Anal, 37(4): 793-99.

Justo OR and Moraes AM (2003). Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Delivery, 10(3): 201-07.

Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P and Poter CJ (2009). PEGylation of polylysinedendrimers improves absorption and lymphatic targeting following SC administration in rates. J Control Release, 140(2): 108-16.

Karki R, Mamatha GC, Subramanya G and Udupa N (2008). Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem, 1(2): 224-27.

Kaur IP and Bhandari R (2013). Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same. WO2013105101 A1.

Kaur IP and Verma MK (2013). A process for preparing solid lipid sustained release nanoparticles for delivery of vitamins. WO 2013105026 A1.

Khuller GK, Kapur M and Sharma S (2004). Liposome technology for drug delivery against mycobacterial infections. Curr Pharm Des, 10(26): 3263-74.

Kisich KO, Gelperina SI, Higgins MP, Wilson S, Shipulo E, Oganesyan E and Heifets LB (2007). Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm, 345: 154-62.

Klemens SP, Cynamon MH, Swenson CE and Ginsberg RS (1990). Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother, 34(6): 967-70.

Kumar PV, Agashe H, Dutta T and Jain NK (2007a). PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Del, 4(1): 11-19.

Kumar PV, Asthana A, Dutta T and Jain NK (2006). Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target, 14(8): 546-56.

Kumar V, Abbas AK, Fausto N and Mitchell RN (2007). Robbins Basic Pathology. In: Tuberculosis, 8th edition, Saunders Elsevier. pp 516-22.

KurunovIu N, Ursov IG, Krasnov VA, Petrenko TI, Iakovchenko NN, Svistelńik AV and Filimonov PA (1995). Effectiveness of liposomal antibacterial drugs in the inhalation therapy of experimental tuberculosis. Problemy Tuberkuleza, 1: 38-40.

Langer R and Folkman J (1976). Polymers for the sustained release of proteins and other macromolecules. Nature, 263(5580): 797-800.

Leitzke S, Bucke W, Borner K, Muller R, Hahn H and Ehles S (1998). Rational for and efficacy of prolonged interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrob Agents Chemother, 42(2): 459-61.

Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, Tompkins NM, Rose JD, Reynolds RC and Orme IM (2005). Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother, 49(6): 2294-2301.

Lima HOS, Moraes AM, Santana MHA, De-Moraes FF and Zanin GM (1999). Preparation and characterization of inclusion complexes of cyclodextrins and tuberculosis primary treatment drugs. Kluwer academic publication, Proceedings of the 9th International symposium on cyclodextrins, pp 463-66.

LoBue Philip (2009). Extensively drug-resistant tuberculosis. Curr Opinion Infect Dis, 22(2): 167-73.

Louw GE, Warren RM, Gey Van Pittius NC, McEvoy CRE, Van Helden PD and Victor TC (2009). A Balancing Act: Efflux/Influx in Mycobacterial Drug Resistance. Antimicrob Agents Chemother, 53(8): 3180-89.

Lowenthal RM and Eaton K (1996). Toxicity of chemotherapy. Hematol Oncol Clin North Am, 10(4): 967-90.

Maccari R, Ottana R, Bottari B, Potondo E and Vigorita MG (2004). In vitro advanced antimycobacterial screening of cobalt(II) and copper(II) complexes of fluorinated isonicotinoyl hydrazones. Bioorg Med Chem Lett, 14(23): 5731-33.

Maiti A and Ghosh S (1989). Synthesis and reactivity of the oxovanadium (IV) complexes of two N-O donors and potentiation of the anti-tuberculosis activity of one of them on chelation to metal ions. J Inorg Biochem, 36(2): 131-39.

Manalan BV, Kolavennu P, Prabahar AE, Nadendla RR and Manukonda K (2014). Dendritic nanoparticulated carriers for the delivery of anti-tuberculosis bioactives. Int J Bio Pharm Res, 5(12): 913-20.

Mehta RT, Keyhani A, McQueen TJ, Rosenbaum B, Rolston KV and Tarrand JJ (1993). In vitro activity of free and liposomal drugs against Mycobacterium avium-M. Intracellular complex and M.Tuberculosis. Antimicrob Agents Chemother, 37(12): 2584-87.

Mehta SK, Bhasin KK, Mehta N and Dham S (2005). Behavior of rifampicin in association with β-cyclodextrin in aqueous media: a spectroscopic and conductometric study. Colloid and Polymer Sci, 283(5): 532-38.

Mehta SK, Kaur G and Bhasin KK (2008). Incarpotarion of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters. Pharm Res, 25(1): 227-36.

Mehta SK, Kaur G and Bhasin KK (2010). Tween-embedded microemulsions-physiochemical and spectroscopic analysis for antitubercular drugs. AAPS Pharm Sci Tech, 11(1): 143-53.

Mehta SK, Jindal N and Kaur G (2011). Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes. Colloids Surf B Biointerfaces, 87(1): 173-79.

Mukherjee S, Ray S and Thakur RS (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci, 71(4): 349-58.

Müller RH (1991). Colloidal carriers for controlled drug delivery and targeting: Modification, characterization and in-vivo distribution. CRC Press, pp 45-55.

Müller RH, Maassen S, Schwarz C and Mehnert W (1997). Solid lipid nanopaticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release, 47(3): 261-69.

Müller RH, Maassen S, Weyhers H and Mehnert W (1996). Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target, 4(3): 161-70.

Müller RH, Mader K and Gohla S (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art.Eurp J Pharm Biopharm, 50(1): 161-77.

Müller RH and Runge SA (1998). In: Benita S, Eds. Solid lipid nanoparticles (SLN) for controlled drug delivery. Submicron emulsions in drug targeting and delivery, Amsterdam: Harwood Academic Publishers, pp 219-34.

Nair R, Priya VK, Kumar KSA, Badivaddin TM and Sevukarajan M (2011). Formulation and evaluation of solid lipid nanoparticles of water soluble drug: Isoniazid. J Pharm Sci Res, 3(5): 1256-64.

Nikonenko B, Reddy VM, Bogatcheva E, Protopopova M, Einck L and Nacy CA (2014). Therapeutic Efficacy of SQ641-Nanoemulsion against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 58(1): 587-89.

O’Hara P and Hickey AJ (2000). Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res, 17(8): 955-61.

O'Brien R (1994). Drug-resistant tuberculosis: etiology, management and prevention. Semin Respir Infect, 9(2): 104-12.

Oh YK, Nix DE and Straubinger RM (1995). Formulation and efficacy of liposomes-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob Agents Chemother, 39(9): 2104-11.

Ohashi K, Kabasawa T, Ozeki T and Okada H (2009). One step preparation of rifampicin/poly (lactic-coglycolic acid) nanoparticles containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release, 135(1): 19-24.

Otsuka Pharmaceutical Development & Commercialization Inc, (2012). Safety and pharmacokinetics (PK) in Multidrug-Resistant (MDR) refractive tuberculosis. ClinicalTrials.gov, US National Institutes of Health, NCT01131351. (http://www.clinicaltrials.gov)

Pandey R and Khuller GK (2004). Polymer based drug delivery systems for mycobacterial infections. Curr Drug Del, 1(3): 195-201.

Pandey R and Khuller GK (2004a). Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model.J Antimicrob Chemother, 54(1): 266-68.

Pandey R and Khuller GK (2005b). Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis, 85(4): 227-34.

Pandey R and Khuller GK (2006). Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrob Chemother, 57(6): 1146-52.

Pandey R and Khuller GK (2009). Solid lipid nanoparticles (SLN) having a drug or drugs encapsulated therein. Indian patent, 236319.

Pandey R, Sharma A, Ahmad Z, Sharma S, Khuller GK and Prasad B (2003). Poly (DL-lactide-coglycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother, 52(6): 981-86.

Pandey R, Sharma S and Khullar GK (2005a). Oral solid lipid nanoparticles-based antitubercular chemotherapy. Tuberculosis, 85(5-6): 415-20.

Pandey R, Sharma S and Khuller GK (2004). Lung specific stealth liposomes as antitubercular drug carriers in guinea pigs. Indian J Exp Bio, 42(6): 562-66.

Pandey R, Sharma S and Khuller GK (2004a). Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int J Antimicrob Agents, 24: 93-4.

Paramasivan CN, Sulochana S, Kubendiran G, Venkatesan P and Mitchison DA (2005). Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 49(2): 627-31.

Petit JLV, Gonzalez RD and Botello AF (2013). Lipid nanoparticle capsules. US20130017239 A1.

Pin Y and Zhang XP (1989). Synthesis and characterization of new chromium(III), vanadium(IV), and titanium(III) complexes with biologically active isonicotinic acid hydrazide. J Inorg Biochem, 37(1): 61-68.

Prabakaran D, Singh P, Jaganathan KS and Vyas SP (2004). Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. J Control Rel, 95(2): 239-48.

Rajdev P, Mondol T, Makhal A and Pal SK (2011). Simultaneous binding of anti-tuberculosis and anti-thrombosis drugs to a human transporter protein: A FRET study. J Photochem Photobio B: Biology, 103(2): 153-58.

Ramalho TC, Da-Cunha EFF and De-Alencastro RB (2004). A density functional study on the complexation of ethambutol with divalent cations. J Molecular Structure: Theochem, 676(1–3): 149-53.

Rani NP, Suriyaprakash TNK and Senthamarai R (2010). Formulation and evaluation of rifampicin and gatifloxacin niosomes on logarithmic-phase cultures of Mycobacterium tuberculosis. Int J Pharm Bio Sci, 1(4): 379-87.

Rao PB, Suresh S and Balasangameshwer NC (2006). Physicochemical characterization of β-cyclodextrin and hydroxy ethyl β-cyclodextrin complexes of rifampicina. Ars Pharmaceutica, 47(1): 37-59.

Ratain MJ and Mick R (1996). Principles of pharmacokinetics and pharmacodynamics. In: Schilsky RL, Milano GA, Ratain MJ editors. Principles of Antineoplastic Drug Development and Pharmacology. Marcel Dekker, New York, pp 123-42.

Reddy VM, Einck L, Andries K and Nacy CA (2010). In vitro interactions between new antitubercular drug candidates SQ-109 and TMC-207. Antimicrob Agents Chemother, 54(7): 2840-46.

Reddy VM, Bogatcheva E, Einck L and Nacy CA (2011). Nanoemulsion Formulation Enhances Intracellular Activity of Capuramycin Analogues against Mycobacterium Tuberculosis. Drug Delivery Lett, 1(2): 150-58.

Sandbhor U, Padhye S, Billington D, Rathbone D, Franzblau S, Anson CE and Powell AK (2002). Metal complexes of carboxamidrazone analogs as antitubercular agents: 1. Synthesis, X-ray crystal-structures, spectroscopic properties and antimycobacterial activity against Mycobacterium tuberculosis H37Rv. J Inorg Biochem, 90(3-4): 127-36.

Sankhyan A and Pawar P (2012). Recent trends in niosome as vesicular drug delivery system. J Applied Pharm Sci, 2(6): 20-32.

Schwarz C, Mehnert W, Lucks JS and Müller RH (1994). Solid lipid nanoparticles (SLN) for controlled drug delivery: Production, characterization and sterilization. J Control Release, 30(1): 83-96.

Sequella Inc, (2007). Infectious disease target: Tuberculosis. SQ 109, SQ 609 and Sutezolid are under product pipeline. (www.sequella.com)

Sequella Inc, (2010). Safety, tolerability, pharmacokinetics and measurement of whole blood activity (WBA) of PNU-100480 after multiple oral doses in healthy adult volunteers (Pfizer). Clinical Trials.gov, US National Institutes of Health, NCT00990990. (http://www.clinicaltrials.gov)

Shaji J and Jain V (2010). Solid lipid nanoparticles: A novel carrier for chemotherapy. Int J Phamacy Pharm Sci, 2(3): 8-17.

Sharma A, Pandey R, Sharma S and Khuller GK (2004). Chemotherapeutic efficacy of poly (DL-lactide co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents, 24(6): 599-604.

Sharma A, Sharma S and Khuller GK (2004a). Lectin functionalized poly (lactide-coglycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother, 54(4): 761-66.

Sharma R, Saxena D, Dwivedi AK and Misra A (2001). Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res, 18(10): 1405-10.

Shegokar R, Al-Shaal L and Mitri K (2011). Present Status of Nanoparticle Research for Treatment of Tuberculosis. J Pharm Pharm Sci, 14(1): 100-116.

Singh AK, Verma J, Bhatnager A and Sen S (2003). Tc-99m Isoniazid: A specific agent for diagnosis of tuberculosis. World J Nuclear Med, 2(4): 292–305.

Singh G, Dwivedi H, Saraf SK and Saraf SA (2011). Niosomal delivery of isoniazid - development and characterization. Tropical J Pharm Res, 10(2): 203-10.

Singh G, Raghuvanshi HK, Anand A, Pundir R and Dwivedi H (2010). Targeted Delivery of Rifampicin by Niosomal Drug Delivery System. J Pharm Res, 3(5): 1152-57.

Skidan IN, Gel'perina SE, Severin SE and Guliaev AE (2003). Enhanced activity of rifampicin loaded with polybutyl cyanoacrylate nanoparticles in relation to intracellularly localized bacteria. Antibiot Khimioter, 48(1): 23–26.

Stein GE (1996). Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin Infect Dis, 23(Suppl. 1): S19-24.

Stover CK, Warrener P, Van Devanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE and Baker WR (2000). A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 405: 962-66.

Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN and Hickey AJ (2001). Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res, 18(9): 1315-19.

Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN and Hickey AJ (2001a). Airways delivery of rifampicin microparticles for the treatment of tuberculosis.J Antimicrob Chemother, 48(3): 431-34.

Tangg SJ, Zhang Q, Zheng LH, Sun H, Gu J, Hao XH, Liu YD, Yao L and Xiao HP (2011). Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis, 91(Suppl 1): S61-65.

TB annual report (2014). Central TB Division, Directorate General of Health Services, Ministry of Health and Family Welfare, Nirman Bhavan, New Delhi–110108, pp 1-180. http://www.tbcindia.nic.in.

Tekade RK, Dutta T, Gajbhiye V and Jain NK (2009). Exploring dendrimer towards dual drug delivery. J Microencapsul, 26(4): 287-96.

Thakur SV, Farooqui M and Naikwade SD (2012). Stability study of complexation of trivalent rare earth metals with isoniazid: Thermodynamic aspect. Int J Res Inorg Chem, 1(4): 5-7.

Thomas S and Bagyalakshmi J (2013). Design, Development and Characterization of Pyrazinamide Niosomal Dosage Form. Am J Pharm Tech Res, 3(6): 532-44.

Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J and Smith P (1985). A new class of polymers: starburst-dendritic macromolecules. Polymer Journal, 17(1): 117-32.

Tripathi KD (2010). Essentials of medical pharmacology. In: Antitubercular drugs, 6th edition, Jaypeebrothers medical publishers (P) ltd, pp 739-50.

Vyas SP, Kannan ME, Jain S et al., (2004). Design of liposomal aerosol for improved delivery of rifampicin to alveolar macrophages.Int J Pharm, 269(1): 37-49.

Weiner M, Burman W, Luo CC, Peloquin CA, Engle M, Goldgerg S, Agarwal V and Vemon A (2007). Effects of Rifampin and multidrug esistance gene polymorphism on concentrations of Moxifloxacin. Antimicrob Agents Chemother, 51(8): 2861-2866.

Weiss J, Maier C, Leuenberger B, Novotny M Tedeschi C and Kessler A (2014). Solid lipid nanoparticles (i). WO/2014/140264 A1.

Westesen K, Siekmann B and Koch MHJ (1993). Investigations on the physical state of lipid nanoparticles by synchrotron radiation X‐ray diffraction. Int J Pharm, 93: 189-99.

Wörner C and Mülhaupt R (1993). Polynitrile-and polyamine-functional poly(trimethylene imine) dendrimers. Angewandte Chemie International Edition, 32(9): pp 1306-08.

Yadav P, Deolekar P, Kanase V and Mishra S (2012). Overview of new anti-TB drugs. Int J Pharm Sci Res, 3(8): 2472-81.

Zhang L, Pornpattananangkul D, Hu CMJ and Huang CM (2010). Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem, 17(6): 585-94.