Pharmaceutical Applications of Carbon Nanotube-Mediated Drug Delivery Systems

DOI:

https://doi.org/10.37285/ijpsn.2012.5.2.4

Authors

  • Pradeep Kumar S
  • Prathibha D
  • Gowri Shankar N L
  • Parthibarajan R
  • Mastyagiri L
  • Shankar M

Abstract



Carbon nanotubes, which are elongated fullerenes, resemble graphite sheets wrapped into cylinders with a high length-to-width ratio (few nm in diameter and up to 1 mm in length). Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. Carbon nanotubes have drawn great interest and attraction in the field of novel drug delivery system. Nanomedicines can target, diagnose, monitor and treat cancerous cell also. The small nanoscale dimension and astonishing properties make them a distinctive carrier with a wide range of promising applications. These cylindrical carbon molecules have novel properties that make them potentially useful in many applications in nanotechnology. The various nano-size carrier systems are available for biotechnological applications including the drug delivery. Carbon nanotubes are typically used for bioactive delivery due to their some unique outstanding properties. Carbon nanotubes drug delivery system opens up new potential and possibilities over nanoparticles, dendrimers, liposomes etc. for biomedical applications and new drug delivery. In last few years, Carbon nanotubes (CNTs) have shown unexpected advantages in the field of cancer treatment and drug delivery systems. Present review article discuss in brief about the methods of synthesis, with purification as well as sorting techniques for giving different grades to different types of CNTs and biomedical applications. These show very good adsorption properties which helps in the detection of various chemicals, toxic agents etc. Research done using CNTs for cancer treatment is also discussed in brief.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Chemical vapour deposition (CVD), magnetic purification, genetic engineering, biomedical applications

Downloads

Published

2012-08-31

How to Cite

1.
S PK, D P, N L GS, R P, L M, M S. Pharmaceutical Applications of Carbon Nanotube-Mediated Drug Delivery Systems. Scopus Indexed [Internet]. 2012 Aug. 31 [cited 2024 May 18];5(2):1685-96. Available from: https://www.ijpsnonline.com/index.php/ijpsn/article/view/572

Issue

Section

Review Articles

References

Alexander A. Green, Mark C. Hersam (2009). Processing and properties of highly enriched double wall carbon nanotubes. Natures Nanotechnology; 4: 64-70.

A. Bianco, K. Kostarelos, M. Prato, (2005). Applications of carbon nanotubes in drug delivery” Current Opinion in Biotechnology 9, 674.

Bandow, Shunji, Rao, A. M., Williams, K. A., Thess, A., Smalley, R. E., and Eklund, P. C., 1997, Journal of Physical Chemistry B, 101, (44).

Barroug A, Glimcher M. (2002). Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res; 20: 274-280.

Bolshakov, A. P., Uglov, S. A., Saveliev, A. V., Konov, V. I., Gorbunov, A. A., Pompe, W., and Graff, A (2002). Diamond and Related Materials, 11, (3-6).

Borowiak-Palen, E., Pichler, T., Liu, X., Knupfer, M., Graff, A., Jost, O., Pompe, W., Kalenczuk, R. J., and Fink, J., ( 2002). Chemical Physics Letters, 363, (5-6), 567-572.

P.J.F. Harris (2009), Carbon nanotube science: Synthesis, Properties and Applications, (Cambridge University Press, Cambridge).

Chiang, I. W., Brinson, B. E., Huang, A. Y., Willis, P. A., Bronikowski, M. J., Margrave, J. L., Smalley, R. E., and Hauge, R. H., (2001). Journal of Physical Chemistry B, 105, (35), 8297-8301.

Chiang, I. W., Brinson, B. E., Smalley, R. E., Margrave, J. L., and Hauge, R. H., (2001), Journal of Physical Chemistry B, 105, (6), 1157-1161.

Condell D. Doyle., James M. Tour. (2009), Environmentally friendly functionalization of single walled carbon nanotubes in moltern urea. J Carbon; 47(14): 3215-3218.

Dresselhaus MS, Dresselhaus G, Charlier JC and Hernandez E (2004). Electronic, thermal and mechanical properties of carbon nanotubes. Philos Transact A Math Phys Eng Sci; 362: 2065‐98.

Ebbesen, T. W. and Ajayan, P. M., (1992). Nature, 358, (220-222).

Eklund, P. C., Pradhan, B. K., Kim, U. J., Xiong, Q., Fischer, J. E., Friedman, A. D., Holloway, B. C.,Jordan, K., and Smith, M. W., (2002). Nano Letters, 2, (6).

Endo, Morinobu, Takeuchi, Kenji, Igarashi, Susumu, Kobori, Kiyoharu, Shiraishi, Minoru, and Kroto, Harold W (1993). Journal of Physics and Chemistry of Solids, 54, (12).

Ewelina Z, Monika Bil, Ryszkowska J, Showan N Nazhat, Johann Cho, Oana B, Judith AR, Aldo RB (2009). Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomedical Materials 4(1).

Farkas, E., Anderson, M. E., Chen, Z. H., and Rinzler, A. G., (2002). Chemical Physics Letters, 363, (1-2), 111-116.

Georgakilas, Vasilios, Voulgaris, Dimitrios, Vazquez, Ester, Prato, Maurizio, Guldi, Dirk M., Kukovecz, Akos, and Kuzmany, Hans, (2002). Journal of the American Chemical Society, 124, (48).

Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., (1995). Chemical Physics Letters, 243, (1, 2).

Harrison B, Atala A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials; 28(2): 344-353.

Hou, Peng Xiang, Liu, C., Tong, Y, Liu, M., and Cheng, H. M., (2001). Journal of Materials Research, 16, (9), 2526-2529

http://www.nanocyl.com/en/CNT-Expertise-Centre/Carbon-Nanotubes/Double-wall-Nanotubes-DWNT

http://www.nanowork.com/news/newsid=8296.php.

http://www.pharmainfo.net Vol. 5 Issue 4, 2007. Methods of Carbon Nanotube and Nanohorn Synthesis: A Review.

Huang, Houjin, Shiraishi, Masashi, Yamada, Atsuo, Kajiura, Hisashi, and Ata, Masafumi., 2001- JP10713, (0245812).

Iijima, S. Nature, 1991. 354, 56-58.

Jayachandran V, Se-Kwon Kim, Chitosan. (2010). Composites for Bone Tissue Engineering: An Overview. Marine Drugs 8: 2252-2266.

Jia, F., Shan, C., Li, F., & Niu, L. (2008). Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. Biosensors and Bioelectronics, 24(4), 945-950.

Jithesh Veetil V, Kaiming Ye. (2009). Tailored carbon nanotubes for tissue engineering applications. Biotechnology Progress; 25(3): 709-721.

Joselevich E. (2004). Electronic structure and chemical reactivity of carbon nanotubes: a chemist's view. Chemphyschem; 5:619‐24.

Journet, C. and Bernier, P., (1998). Applied Physics A - Materials Science & Processing, 67, (1), 1-9.

Jung, S. H., Kim, M. R., Jeong, S. H., Kim, S. U., Lee, O. J., Lee, K. H., Suh, J. H., and Park, C. K., (2003) Applied Physics A-Materials Science & Processing, 76, (2), 285-286.

J. Clendenin, J. Kim, S. Tung, (2007). An Aligned Carbon Nanotube Biosensor for DNA Detection. Proc of 2007 2nd IEEE conference on Nanotechnology, 1028.

Kajiura, H., Tsutsui, S., Huang, H. J., and Murakami, Y., (2002). Chemical Physics Letters, 364, (5-6), 586-, 2002.

Kam, N. W. S., Liu, Z., & Dai, H. J. (2005). Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. Journal of the American Chemical Society, 127(36), 12492-12493.

Kasif T, Ranjani S, Kousik S, Shoaxin Lu, Eric W, Hisn-Neng W, Tuan Vo-Dinh., Balaji P (2005). Applications of carbon nanotubes for cancer research. NanoBioTechnology 1(2): 171-182.

Lacerda L, Bianco A, Prato M, Kostarelos K (2006). Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug. Deli. Rev 58:1460-1470.

Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/ amperometric detection of organophosphate pesticides and nerve Agents. Analytical Chemistry, 78(3), 835-843.

Liu, Z., Fan, A. C., Rakhra, K., Sherlock, S., Goodwin, A., Chen, X. Y., Yang, Q. W., Felsher, D. W., & Dai, H. J. (2009). Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angewandte Chemie-International Edition, 48(41), 7668-7672.

Liu, Z., Winters, M., Holodniy, M., & Dai, H. J. (2007). siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-International Edition, 46(12), 2023-2027.

Lyons, M. E. G., & Keeley, G. P. (2008). Immobilized enzyme-single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chemical Communications (22), 2529-2531.

Maser, W. K., Munoz, E., Benito, A. M., Martinez, M. T., de la Fuente, G. F., Maniette, Y., Anglaret, E., and Sauvajol, J. L., (1998). Chemical Physics Letters, 292, (4,5,6).

Moon, J. M., An, K. H., Lee, Y. H., Park, Y. S., Bae, D. J., and Park, G. S (2001). Journal of Physical Chemistry B, 105, (24), 5677-5681.

Morinobu E, Takuya H, Yoong-Ahm K. (2006). Large-scale production of carbon nanotubes and their applications. Pure Applied Chemistry; 78 (9): 1703-1713.

Niraj S, John T, Yeow W (2005). Carbon Nanotubes for Biomedical Applications. IEEE Transactions on Nanobioscience 4(2): 180-195.

Niyogi, S., Hu, H., Hamon, M. A., Bhowmik, P., Zhao, B., Rozenzhak, S. M., Chen, J., Itkis, M. E., Meier, M. S., and Haddon, R. C (2001). Journal of the American Chemical Society, 123, (4), 733-734.

Pai P, Nair K, Jamade S, Shah R, Ekshinge V, Jadhav N. (2006). Pharmaceutical applications of carbon tubes and nanohorns. Current Pharma Research Journal 1:11-15.

Pantarotto D, Partidos C, Hoebeke J, Brown F, Kramer E, Briand J. (2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10: 961-966.

Pingang He, Ying Xu, Yuzhi Fang (2006), Application of carbon nanotubes in electrochemical DNA Biosensors. Microchimica Acta; 152 (3-4): 175-186.

Scott, C. D., Arepalli, S., Nikolaev, P., and Smalley, R. E., (2001). Applied Physics A: Materials Science & Processing, 72, (5).

Sebastien W, Giorgia W, Monica P, Cedric B, Jean-Paul K, Renato B. (2005). Targeted delivery of amphotericin b to cells by using functionalized carbon nanotubes. Angewandte Chemie 117: 6516-6520.

Shelimov, K. B., Esenaliev, R. O, Rinzler, A. G., Huffman, C. B., and Smalley, R. E., (1998) Chem.Phys.Lett., 282, 429-434.

Shi DL, Lian J, Wang W, Liu GK, Dong Z, Wang LM et.al. (2005). Luminescent carbon Nanotubes by Surface Functionalization. Advanced Materials 18(2): 189-193.

Strong, K.L.; Anderson, D.P., D.P.; Lafdi, K & Kuhn, J.N. Carbon, 2003; 41: 1477-488.

S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin: (2006). The biocompatibility of carbon nanotubes. Carbon, 44, 1034–1047.

Thien-Nga, L., Hernadi, K., Ljubovic, E., Garaj, S., and Forro, L., (2002), Nano Letters, 2, (12), 1349-1352.

Trotter H, Phillips R, Ni B, Hu Y, Sinnott SB, Mikulski PT, et al. (2005). Effect of filling on the compressibility of carbon nanotubes: predictions from molecular dynamics simulations. J Nanosci Nanotechnol; 5:536‐41.

Vander Wal, Randall L., Hall, Lee J., and Berger, Gordon M. (2002). Single-Walled Carbon Nanotube Synthesis via a Multi-stage Flame Configuration. Journal of Physical Chemistry B 106: 3564–3567.

Wang, J., Deo, R. P., Poulin, P., & Mangey, M. (2003). Carbon Nanotube Fiber Microelectrodes. Journal of the American Chemical Society, 125(48), 14706-14707.

Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., Ichihashi, T., and Iijima, S., (1999). Journal of Physical Chemistry B, 103, (30).

Zhang, M., & Gorski, W. (2005). Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. Journal of the American Chemical Society, 127(7), 2058-2059.

Zhao, B., Hu, H., Niyogi, S., Itkis, M. E., Hamon, M. A., Bhowmik, P., Meier, M. S., and Haddon RC (2001). Journal of the American Chemical Society, 123, (47), 11673-11677.